

Caterva Documentation

Caterva is an open source C library specially designed to deal with large
multidimensional, chunked, compressed datasets.

Getting Started

New to caterva? Check out the getting started guides. They contain an
introduction to caterva’ main concepts and an installation tutorial.

To the getting started guides

API Reference

The reference guide contains a detailed description of the caterva API.
The reference describes how the functions work and which parameters can
be used.

To the reference guide

Development

Saw a typo in the documentation? Want to improve
existing functionalities? The contributing guidelines will guide
you through the process of improving caterva.

To the development guide

Release Notes

Want to see what’s new in the latest release? Check out the release notes to find out!

To the release notes

Getting Started

	What is caterva?
	Blosc

	Installation

	Tutorials

What is caterva?

Caterva is a container for multidimensional data that is specially designed to
read, in an incredibly efficient way, datasets slices. To achieve this, a new
chunking-based data layout has been created.

[image: ../_images/overview.png]
Like other libraries like Zarr, HDF5 or TileDB, Caterva stores the data into
multidimensional chunks (yellow cubes). These chunks can then be read
individually, improving performance when reading slices of the dataset. But
also, Caterva introduces a new level of chunking. Within each chunk, the data is
re-partitioned into smaller multidimensional sets called blocks (green cubes).
In this way, Caterva can read blocks individually (and also in parallel) instead
of chunks.

These partition levels allow to access data efficiently with a larger set of
data access patterns. This is due to obtain the desired slice, instead of
reading the data using the chunks, data is obtained using the blocks.

Blosc

In Caterva the compression is handled transparently for the user by leveraging
the Blosc2 library. Blosc is an extremely fast compressor specially designed
for binary data. It uses the blocking technique to reduce activity on the memory
bus as much as possible. It also leverages SIMD (SSE2, AVX2 for Intel, NEON for
ARM, Altivec for Power) and multi-threading capabilities present in multi-core
processors so as to accelerate the compression/decompression process to a
maximum.

Being able to store in an in-memory data container does not mean that data
cannot be persisted. It is critical to find a way to store and retrieve data
efficiently. Also, it is important to adopt open formats for reducing the
maintenance burden and facilitate its adoption more quickly. Blosc2 brings such
an efficient and open format for persistency [https://github.com/Blosc/c-blosc2/blob/main/README_CFRAME_FORMAT.rst].

An aditional feature that introduces Blosc2 is the concept of metalayers. They
are small metadata for informing about the kind of data that is stored on a
Blosc2 container. They are handy for defining layers with different specs: data
types, geo-spatial…

Caterva metalayer

Caterva is created by specifying a metalayer on top of a Blosc2 container for storing
multidimensional information.
Specifically, Caterva metalayer follows the msgpack format:

-0-	-1-	-2-	-3-	~~~~~~~~~~~~~~~~	---	~~~~~~~~~~~~~~~~	---	~~~~~~~~~~~~~~~~
9X	n	n	9X	shape	9X	chunkshape	9X	blockshape
---	---	---	---	~~~~~~~~~~~~~~~~	---	~~~~~~~~~~~~~~~~	---	~~~~~~~~~~~~~~~~
^ ^ ^ ^ ^ ^								
				+--[msgpack] positive fixnum for n				
			+--[msgpack] positive fixnum for n					
		+--[msgpack] fixarray with X=nd elements						
	+--[msgpack] positive fixnum for the number of dimensions (n, up to 127)							
+--[msgpack] positive fixnum for the metalayer format version (up to 127)								
 +---[msgpack] fixarray with X=5 elements

In this format, the shape section is meant to store the actual shape info:

---	--8 bytes---	---	--8 bytes---	~~~~~	---	--8 bytes---
d3	first_dim	d3	second_dim	...	d3	nth_dim
---	------------	---	------------	~~~~~	---	------------
^ ^ ^						
	+--[msgpack] int64					
+--[msgpack] int64						
 +--[msgpack] int64

Next, the chunkshape section is meant to store the actual chunk shape info:

---	--4 bytes---	---	--4 bytes---	~~~~~	---	--4 bytes---
d2	first_dim	d2	second_dim	...	d2	nth_dim
---	------------	---	------------	~~~~~	---	------------
^ ^ ^						
	+--[msgpack] int32					
+--[msgpack] int32						
 +--[msgpack] int32

Finally, the blockshape section is meant to store the actual block shape info:

---	--4 bytes---	---	--4 bytes---	~~~~~	---	--4 bytes---
d2	first_dim	d2	second_dim	...	d2	nth_dim
---	------------	---	------------	~~~~~	---	------------
^ ^ ^						
	+--[msgpack] int32					
+--[msgpack] int32						
 +--[msgpack] int32

Installation

Caterva can be built, tested and installed using CMake. The following procedure
describes a typical CMake build.

	Download the source code from Github:

Unix
git clone --recurse-submodules git@github.com:Blosc/caterva.git

Windows
git clone --recurse-submodules git@github.com:Blosc/caterva.git

 Caterva Tutorials

Caterva Tutorials

Coming soon!

 Caterva Reference

Caterva Reference

	Context
	Configuration parameters

	Creation

	Destruction

	Array
	Parameters

	Creation

	Slicing

	Destruction

	Metalayers
	Fixed-length metalayers

	Variable-length metalayers

	High-level APIs

 Context

Context

	
struct caterva_ctx_t

	Context for caterva arrays that specifies the functions used to manage memory and the compression/decompression parameters used in Blosc.

Configuration parameters

	
struct caterva_config_t

	Configuration parameters used to create a caterva context.

Public Members

	
void *(*alloc)(size_t)

	The memory allocation function used internally.

	
void (*free)(void*)

	The memory release function used internally.

	
uint8_t compcodec

	Defines the codec used in compression.

	
uint8_t compmeta

	The metadata for the compressor codec.

	
uint8_t complevel

	Determines the compression level used in Blosc.

	
int32_t splitmode

	Whether the blocks should be split or not.

	
int usedict

	Indicates whether a dictionary is used to compress data or not.

	
int16_t nthreads

	Determines the maximum number of threads that can be used.

	
uint8_t filters[BLOSC2_MAX_FILTERS]

	Defines the filters used in compression.

	
uint8_t filtersmeta[BLOSC2_MAX_FILTERS]

	Indicates the meta filters used in Blosc.

	
blosc2_prefilter_fn prefilter

	Defines the function that is applied to the data before compressing it.

	
blosc2_prefilter_params *pparams

	Indicates the parameters of the prefilter function.

	
blosc2_btune *udbtune

	Indicates user-defined parameters for btune.

	
static const caterva_config_t CATERVA_CONFIG_DEFAULTS

	The default configuration parameters used in caterva.

Creation

	
int caterva_ctx_new(caterva_config_t *cfg, caterva_ctx_t **ctx)

	Create a context for caterva.

	Parameters

	
	cfg – The configuration parameters needed for the context creation.

	ctx – The memory pointer where the context will be created.

	Returns

	An error code.

Destruction

	
int caterva_ctx_free(caterva_ctx_t **ctx)

	Free a context.

	Parameters

	ctx – The The context to be freed.

	Returns

	An error code.

 Array

Array

	
struct caterva_array_t

	A multidimensional array of data that can be compressed data.

Parameters

General parameters

	
struct caterva_params_t

	General parameters needed for the creation of a caterva array.

Public Members

	
uint8_t itemsize

	The size of each item of the array.

	
int64_t shape[CATERVA_MAX_DIM]

	The array shape.

	
uint8_t ndim

	The array dimensions.

Storage parameters

	
struct caterva_storage_t

	Storage parameters needed for the creation of a caterva array.

Public Members

	
caterva_storage_backend_t backend

	The backend storage.

	
caterva_storage_properties_t properties

	The specific properties for the selected backend.

	
enum caterva_storage_backend_t

	The backends available to store the data of the caterva array.

Values:

	
enumerator CATERVA_STORAGE_BLOSC

	Indicates that the data is stored using a Blosc super-chunk.

	
enumerator CATERVA_STORAGE_PLAINBUFFER

	Indicates that the data is stored using a plain buffer.

	
union caterva_storage_properties_t

	#include <caterva.h>The storage properties for an array.

Public Members

	
caterva_storage_properties_blosc_t blosc

	The storage properties when the array is backed by a Blosc super-chunk.

	
caterva_storage_properties_plainbuffer_t plainbuffer

	The storage properties when the array is backed by a plain buffer.

	
struct caterva_storage_properties_blosc_t

	The storage properties for an array backed by a Blosc super-chunk.

Public Members

	
int32_t chunkshape[CATERVA_MAX_DIM]

	The shape of each chunk of Blosc.

	
int32_t blockshape[CATERVA_MAX_DIM]

	The shape of each block of Blosc.

	
bool sequencial

	Flag to indicate if the super-chunk is stored sequentially or sparsely.

	
char *urlpath

	The super-chunk name.

If urlpath is not NULL, the super-chunk will be stored on disk.

	
caterva_metalayer_t metalayers[CATERVA_MAX_METALAYERS]

	List with the metalayers desired.

	
int32_t nmetalayers

	The number of metalayers.

	
struct caterva_metalayer_t

	The metalayer data needed to store it on an array.

Public Members

	
char *name

	The name of the metalayer.

	
uint8_t *sdata

	The serialized data to store.

	
int32_t size

	The size of the serialized data.

	
struct caterva_storage_properties_plainbuffer_t

	The storage properties that have a caterva array backed by a plain buffer.

Public Members

	
char *urlpath

	The plain buffer name.

If urlpath is not NULL, the plain buffer will be stored on disk. (Not implemented yet).

Creation

Fast constructors

	
int caterva_empty(caterva_ctx_t *ctx, caterva_params_t *params, caterva_storage_t *storage, caterva_array_t **array)

	Create an empty array.

	Parameters

	
	ctx – The caterva context to be used.

	params – The general params of the array desired.

	storage – The storage params of the array desired.

	array – The memory pointer where the array will be created.

	Returns

	An error code.

	
int caterva_zeros(caterva_ctx_t *ctx, caterva_params_t *params, caterva_storage_t *storage, caterva_array_t **array)

	Create an array, with zero being used as the default value for uninitialized portions of the array.

	Parameters

	
	ctx – The caterva context to be used.

	params – The general params of the array.

	storage – The storage params of the array.

	array – The memory pointer where the array will be created.

	Returns

	An error code.

	
int caterva_full(caterva_ctx_t *ctx, caterva_params_t *params, caterva_storage_t *storage, void *fill_value, caterva_array_t **array)

	Create an array, with fill_value being used as the default value for uninitialized portions of the array.

	Parameters

	
	ctx – The caterva context to be used.

	params – The general params of the array.

	storage – The storage params of the array.

	fill_value – Default value for uninitialized portions of the array.

	array – The memory pointer where the array will be created.

	Returns

	An error code.

From/To buffer

	
int caterva_from_buffer(caterva_ctx_t *ctx, void *buffer, int64_t buffersize, caterva_params_t *params, caterva_storage_t *storage, caterva_array_t **array)

	Create a caterva array from the data stored in a buffer.

	Parameters

	
	ctx – The caterva context to be used.

	buffer – The buffer where source data is stored.

	buffersize – The size (in bytes) of the buffer.

	params – The general params of the array desired.

	storage – The storage params of the array desired.

	array – The memory pointer where the array will be created.

	Returns

	An error code.

	
int caterva_to_buffer(caterva_ctx_t *ctx, caterva_array_t *array, void *buffer, int64_t buffersize)

	Extract the data into a C buffer from a caterva array.

	Parameters

	
	ctx – The caterva context to be used.

	array – The caterva array.

	buffer – The buffer where the data will be stored.

	buffersize – Size (in bytes) of the buffer.

	Returns

	An error code.

From/To file

	
int caterva_open(caterva_ctx_t *ctx, const char *urlpath, caterva_array_t **array)

	Read a caterva array from disk.

	Parameters

	
	ctx – The caterva context to be used.

	urlpath – The urlpath of the caterva array on disk.

	array – The memory pointer where the array will be created.

	Returns

	An error code.

	
int caterva_save(caterva_ctx_t *ctx, caterva_array_t *array, char *urlpath)

	Save caterva array into a specific urlpath.

	Parameters

	
	ctx – The context to be used.

	array – The array to be saved.

	urlpath – The urlpath where the array will be stored.

	Returns

	An error code.

From Blosc object

	
int caterva_from_schunk(caterva_ctx_t *ctx, blosc2_schunk *schunk, caterva_array_t **array)

	Create a caterva array from a super-chunk.

It can only be used if the array is backed by a blosc super-chunk.

	Parameters

	
	ctx – The caterva context to be used.

	schunk – The blosc super-chunk where the caterva array is stored.

	array – The memory pointer where the array will be created.

	Returns

	An error code.

	
int caterva_from_serial_schunk(caterva_ctx_t *ctx, uint8_t *serial_schunk, int64_t len, caterva_array_t **array)

	Create a caterva array from a serialized super-chunk.

It can only be used if the array is backed by a blosc super-chunk.

	Parameters

	
	ctx – The caterva context to be used.

	serial_schunk – The serialized super-chunk where the caterva array is stored.

	len – The size (in bytes) of the serialized super-chunk.

	array – The memory pointer where the array will be created.

	Returns

	An error code.

Copying

	
int caterva_copy(caterva_ctx_t *ctx, caterva_array_t *src, caterva_storage_t *storage, caterva_array_t **array)

	Make a copy of the array data.

The copy is done into a new caterva array.

	Parameters

	
	ctx – The caterva context to be used.

	src – The array from which data is copied.

	storage – The storage params of the array desired.

	array – The memory pointer where the array will be created.

	Returns

	An error code

Slicing

	
int caterva_get_slice_buffer(caterva_ctx_t *ctx, caterva_array_t *array, int64_t *start, int64_t *stop, void *buffer, int64_t *buffershape, int64_t buffersize)

	Get a slice from an array and store it into a C buffer.

	Parameters

	
	ctx – The caterva context to be used.

	array – The array from which the slice will be extracted.

	start – The coordinates where the slice will begin.

	stop – The coordinates where the slice will end.

	buffershape – The shape of the buffer.

	buffer – The buffer where the data will be stored.

	buffersize – The size (in bytes) of the buffer.

	Returns

	An error code.

	
int caterva_set_slice_buffer(caterva_ctx_t *ctx, void *buffer, int64_t *buffershape, int64_t buffersize, int64_t *start, int64_t *stop, caterva_array_t *array)

	Set a slice into a caterva array from a C buffer.

	Parameters

	
	ctx – The caterva context to be used.

	buffer – The buffer where the slice data is.

	buffersize – The size (in bytes) of the buffer.

	start – The coordinates where the slice will begin.

	stop – The coordinates where the slice will end.

	buffershape – The shape of the buffer.

	array – The caterva array where the slice will be set

	Returns

	An error code.

	
int caterva_get_slice(caterva_ctx_t *ctx, caterva_array_t *src, int64_t *start, int64_t *stop, caterva_storage_t *storage, caterva_array_t **array)

	Get a slice from an array and store it into a new array.

	Parameters

	
	ctx – The caterva context to be used.

	src – The array from which the slice will be extracted

	start – The coordinates where the slice will begin.

	stop – The coordinates where the slice will end.

	storage – The storage params of the array desired.

	array – The memory pointer where the array will be created.

	Returns

	An error code.

	
int caterva_squeeze(caterva_ctx_t *ctx, caterva_array_t *array)

	Squeeze a caterva array.

This function remove single-dimensional entries from the shape of a caterva array.

	Parameters

	
	ctx – The caterva context to be used.

	array – The caterva array.

	Returns

	An error code

Destruction

	
int caterva_free(caterva_ctx_t *ctx, caterva_array_t **array)

	Free an array.

	Parameters

	
	ctx – The caterva context to be used.

	array – The memory pointer where the array is placed.

	Returns

	An error code.

	
int caterva_remove(caterva_ctx_t *ctx, char *urlpath)

	Remove a Caterva file from the file system.

Both backends are supported.

	Parameters

	
	ctx – The caterva context to be used.

	urlpath – The urlpath of the array to be removed.

	Returns

	An error code

 Metalayers

Metalayers

Fixed-length metalayers

	
int caterva_meta_exists(caterva_ctx_t *ctx, caterva_array_t *array, const char *name, bool *exists)

	Check if a metalayer exists or not.

	Parameters

	
	ctx – The context to be used.

	array – The array where the check will be done.

	name – The name of the metalayer to check.

	exists – Pointer where the result will be stored.

	Returns

	An error code

	
int caterva_meta_get(caterva_ctx_t *ctx, caterva_array_t *array, const char *name, caterva_metalayer_t *meta)

	Get a metalayer from a Caterva array.

Warning

The contents of meta are allocated inside the function. Therefore, they must be released with a free.

	Parameters

	
	ctx – The context to be used.

	array – The array where the metalayer will be added.

	name – The vl-metalayer name.

	meta – Pointer to the metalayer where the data will be stored.

	Returns

	An error code

	
int caterva_meta_update(caterva_ctx_t *ctx, caterva_array_t *array, caterva_metalayer_t *meta)

	Update a metalayer content in a Caterva array.

	Parameters

	
	ctx – The context to be used.

	array – The array where the metalayer will be updated.

	meta – The metalayer to update.

	Returns

	An error code

Variable-length metalayers

	
int caterva_vlmeta_add(caterva_ctx_t *ctx, caterva_array_t *array, caterva_metalayer_t *vlmeta)

	Add a vl-metalayer to the Caterva array.

	Parameters

	
	ctx – The context to be used.

	array – The array where the metalayer will be added.

	name – The vl-metalayer to add.

	Returns

	An error code

	
int caterva_vlmeta_exists(caterva_ctx_t *ctx, caterva_array_t *array, const char *name, bool *exists)

	Check if a vl-metalayer exists or not.

	Parameters

	
	ctx – The context to be used.

	array – The array where the check will be done.

	name – The name of the vl-metalayer to check.

	exists – Pointer where the result will be stored.

	Returns

	An error code

	
int caterva_vlmeta_get(caterva_ctx_t *ctx, caterva_array_t *array, const char *name, caterva_metalayer_t *vlmeta)

	Get a vl-metalayer from a Caterva array.

Warning

The contents of vlmeta are allocated inside the function. Therefore, they must be released with a free.

	Parameters

	
	ctx – The context to be used.

	array – The array where the vl-metalayer will be added.

	name – The vl-metalayer name.

	vlmeta – Pointer to the metalayer where the data will be stored.

	Returns

	An error code

	
int caterva_vlmeta_update(caterva_ctx_t *ctx, caterva_array_t *array, caterva_metalayer_t *vlmeta)

	Update a vl-metalayer content in a Caterva array.

	Parameters

	
	ctx – The context to be used.

	array – The array where the vl-metalayer will be updated.

	vlmeta – The vl-metalayer to update.

	Returns

	An error code

 High-level APIs

High-level APIs

Here you can find a list with the wrappers available for Caterva:

	Python Caterva [https://python-caterva.readthedocs.io/en/latest/]: a Pythonic wrapper of Caterva.

 Development

Development

	Contributing to Caterva
	Asking for help

	Bug reports

	Contributing to code

	Roadmap
	Existing features

	Actions to be done

	Outreaching

	Code of Conduct

 Contributing to Caterva

Contributing to Caterva

Caterva is a community maintained project. We want to make contributing to
this project as easy and transparent as possible.

Asking for help

If you have a question about how to use Caterva, please post your question on
StackOverflow using the “caterva” tag [https://stackoverflow.com/questions/tagged/caterva].

Bug reports

We use GitHub issues [https://github.com/Blosc/Caterva/issues] to track
public bugs. Please ensure your description is clear and has sufficient
instructions to be able to reproduce the issue. The ideal report should
contain the following:

1. Summarize the problem: Include details about your goal, describe expected
and actual results and include any error messages.

2. Describe what you’ve tried: Show what you’ve tried, tell us what you
found and why it didn’t meet your needs.

3. Minimum reproducible example: Share the minimum amount of code needed to
reproduce your issue. You can format the code nicely using markdown:

```C
#import <caterva.h>

int main() {
    ...
}
```


4. Determine the environment: Indicates the Caterva version and the operating
system the code is running on.

Contributing to code

We actively welcome your code contributions. By contributing to Caterva, you
agree that your contributions will be licensed under the <LICENSE> [https://github.com/Blosc/Caterva/blob/master/LICENSE] file of
the project.

Fork the repo

Make a fork of the Caterva repository and clone it:

git clone https://github.com/<your-github-username>/caterva

Create your branch

Before you do any new work or submit a pull request, please open an issue on
GitHub [https://github.com/Blosc/Caterva/issues] to report the bug or
propose the feature you’d like to add.

Then create a new, separate branch for each piece of work you want to do.

Update docstrings

If you’ve changed APIs, update the involved docstrings using the doxygen
format [https://www.doxygen.nl/manual/docblocks.html#cppblock].

Run the test suite

If you have added code that needs to be tested, add the necessary tests and
verify that all tests pass successfully.

 Roadmap

Roadmap

Caterva is a multidimensional container for binary data. It is a pure C library, allowing for better interoperatibility between different languages (although Python stands out high in the list).

This document lists the goals for a production release of Caterva.

Existing features

	Built on top of Blosc2: besides transparent compression, this allows to store large compressed datasets either in-memory or on-disk. In addition, Caterva inherits all the improvements that are being introduced in Blosc2 (see https://github.com/Blosc/c-blosc2/blob/main/ROADMAP.rst).

	Two-level multidimensional chunking: like other libraries, Caterva stores the data into multidimensional chunks for efficient slicing. But in addition, Caterva introduces a new level of chunking. Within each chunk, the data is re-chunked into smaller multidimensional sets called blocks, leading to more fine-grained, and hence, to even more efficient slicing capabilities [https://github.com/Blosc/python-caterva/blob/master/notebooks/slicing-performance.ipynb].

	Plainbuffer support: Caterva also allows to store data in a contiguous buffer. In this way, it facilitates the interoperability with other libraries like NumPy.

	Update values: it allows to populate an array in any order.

Actions to be done

	Resize array dimensions: this will allow to increase or decrease in size any dimension of the arrays.

	Improve slicing capabilities: currently Caterva only supports basic slicing based on start:stop ranges; we would like to extend this to start:stop:step as well as selections based on an array of booleans (similar to NumPy).

	Add support for DLPack: support for DLPack [https://github.com/dmlc/dlpack] would be nice for being able to share data between different frameworks and devices. This should complement (or even replace in the long term) the existing plainbuffer support. See this dicussion [https://github.com/data-apis/consortium-feedback/issues/1] for more insight on what advantages could the support for DLPack bring for Caterva.

	Support for multidimensional filters: this will improve the in-memory spatial locally for data that is n-dim closer in the array; by n-dim closer we mean that the multidimensional norm (in an Euclidean space) between two different positions of elements is shorter. This may led to better compression opportunities when spatial locality (Euclidean space) is high.

	Support for multidimensional codecs: this is the equivalent for multidim filters, but for codecs. Multidim codecs can leverage n-dim spatial locality in order to compress better/faster. Such codecs could be used in combination with others, uni-dim codecs (e.g. LZ4), so as to get better ratios.

	Provide wheels: this will make the installation much easier for the user.

Outreaching

	Improve the main Caterva README: this should allow a better overview at first glance of all the features that Caterva offers right now.

	Attend to meetings and conferences: it is very important to plan going to conferences for advertising Caterva and meeting people in-person. We need to decide which meetings to attend. As there are not that much conferences about C libraries, it is important to leverage the python-caterva [https://github.com/Blosc/python-caterva] wrapper so as to try to promote Caterva on Python conferences too.

	Other outreaching activities would be to produce videos of the kind ‘Caterva in 10 minutes’, or producing compelling tutorials (preferably based on Jupyter notebook, and using services like binder [https://mybinder.org] that allows a low entry level for quick trials).

 Code of Conduct

Code of Conduct

The Blosc community has adopted a Code of Conduct that we expect project participants to adhere to.
Please read the full text [https://github.com/Blosc/community/blob/master/code_of_conduct.md]
so that you can understand what actions will and will not be tolerated.

 Release notes

Release notes

Changes from 0.4.0 to 0.5.0

	Redesign the caterva guts and perform a code refactorization in order
to simplify the code. This includes API renaming. A performance improvement
is obtained as can be seen in https://github.com/Blosc/caterva/pull/69#issuecomment-843835622

	Implement a set_slice for arrays backed by Blosc. This allows users to
update the values in the array whenever and wherever they want.

	Implement constructors (empty, zeros, full) using the special-values
features introduced in Blosc.

	Use the pydata_sphinx_theme in the documentation.

Changes from 0.3.3 to 0.4.0

	API renaming. The function names simulate a namespace and some
variable names have been changed to those used by the general community
(part -> chunk).

	Add a new level of multi-dimensionality. As a result, unlike other
libraries, Caterva supports two levels of multi-dimensional chunking (chunks
and blocks).

	Improve library compilation to allow users to avoid building tests and
examples.

	Simplify the test’s suite for a proper integration in Windows.

	Update documentation to improve the library description and to add the
Release notes and the Roadmap in a new section.

Changes from 0.3.0 to 0.3.3

	Fixing that 0.3.1 and 0.3.2 tags were not made in master :-/

Changes from 0.2.2 to 0.3.0

	Big code and API refactorization. As result, the API is more consistent and
hopefully more intuitive to use. For more info on the new API, see
https://caterva.readthedocs.io.

Changes from 0.2.1 to 0.2.2

	Add a caterva_from_sframe() function.

Changes from 0.2.0 to 0.2.1

	Both static and dynamic libraries are created by default now. If you want to
disable the creation of one of them, just set the cmake options
SHARED_LIB=OFF or STATIC_LIB=OFF.

	Add a copy parameter to caterva_from_file().

 Index

Index

 C

C

 	
 	caterva_array_t (C++ struct)

 	CATERVA_CONFIG_DEFAULTS (C++ member)

 	caterva_config_t (C++ struct)

 	caterva_config_t::alloc (C++ member)

 	caterva_config_t::compcodec (C++ member)

 	caterva_config_t::complevel (C++ member)

 	caterva_config_t::compmeta (C++ member)

 	caterva_config_t::filters (C++ member)

 	caterva_config_t::filtersmeta (C++ member)

 	caterva_config_t::free (C++ member)

 	caterva_config_t::nthreads (C++ member)

 	caterva_config_t::pparams (C++ member)

 	caterva_config_t::prefilter (C++ member)

 	caterva_config_t::splitmode (C++ member)

 	caterva_config_t::udbtune (C++ member)

 	caterva_config_t::usedict (C++ member)

 	caterva_copy (C++ function)

 	caterva_ctx_free (C++ function)

 	caterva_ctx_new (C++ function)

 	caterva_ctx_t (C++ struct)

 	caterva_empty (C++ function)

 	caterva_free (C++ function)

 	caterva_from_buffer (C++ function)

 	caterva_from_schunk (C++ function)

 	caterva_from_serial_schunk (C++ function)

 	caterva_full (C++ function)

 	caterva_get_slice (C++ function)

 	caterva_get_slice_buffer (C++ function)

 	caterva_meta_exists (C++ function)

 	caterva_meta_get (C++ function)

 	caterva_meta_update (C++ function)

 	caterva_metalayer_t (C++ struct)

 	caterva_metalayer_t::name (C++ member)

 	caterva_metalayer_t::sdata (C++ member)

 	
 	caterva_metalayer_t::size (C++ member)

 	caterva_open (C++ function)

 	caterva_params_t (C++ struct)

 	caterva_params_t::itemsize (C++ member)

 	caterva_params_t::ndim (C++ member)

 	caterva_params_t::shape (C++ member)

 	caterva_remove (C++ function)

 	caterva_save (C++ function)

 	caterva_set_slice_buffer (C++ function)

 	caterva_squeeze (C++ function)

 	caterva_storage_backend_t (C++ enum)

 	caterva_storage_backend_t::CATERVA_STORAGE_BLOSC (C++ enumerator)

 	caterva_storage_backend_t::CATERVA_STORAGE_PLAINBUFFER (C++ enumerator)

 	caterva_storage_properties_blosc_t (C++ struct)

 	caterva_storage_properties_blosc_t::blockshape (C++ member)

 	caterva_storage_properties_blosc_t::chunkshape (C++ member)

 	caterva_storage_properties_blosc_t::metalayers (C++ member)

 	caterva_storage_properties_blosc_t::nmetalayers (C++ member)

 	caterva_storage_properties_blosc_t::sequencial (C++ member)

 	caterva_storage_properties_blosc_t::urlpath (C++ member)

 	caterva_storage_properties_plainbuffer_t (C++ struct)

 	caterva_storage_properties_plainbuffer_t::urlpath (C++ member)

 	caterva_storage_properties_t (C++ union)

 	caterva_storage_properties_t::blosc (C++ member)

 	caterva_storage_properties_t::plainbuffer (C++ member)

 	caterva_storage_t (C++ struct)

 	caterva_storage_t::backend (C++ member)

 	caterva_storage_t::properties (C++ member)

 	caterva_to_buffer (C++ function)

 	caterva_vlmeta_add (C++ function)

 	caterva_vlmeta_exists (C++ function)

 	cate